2,471 research outputs found

    Vortices and turbulence in trapped atomic condensates

    Get PDF
    After over a decade of experiments generating and studying the physics of quantized vortices in atomic gas Bose-Einstein condensates, research is beginning to focus on the roles of vortices in quantum turbulence, as well as other measures of quantum turbulence in atomic condensates. Such research directions have the potential to uncover new insights into quantum turbulence, vortices and superfluidity, and also explore the similarities and differences between quantum and classical turbulence in entirely new settings. Here we present a critical assessment of theoretical and experimental studies in this emerging field of quantum turbulence in atomic condensates

    Topological Change in Mean Convex Mean Curvature Flow

    Full text link
    Consider the mean curvature flow of an (n+1)-dimensional, compact, mean convex region in Euclidean space (or, if n<7, in a Riemannian manifold). We prove that elements of the m-th homotopy group of the complementary region can die only if there is a shrinking S^k x R^(n-k) singularity for some k less than or equal to m. We also prove that for each m from 1 to n, there is a nonempty open set of compact, mean convex regions K in R^(n+1) with smooth boundary for which the resulting mean curvature flow has a shrinking S^m x R^(n-m) singularity.Comment: 19 pages. This version includes a new section proving that certain kinds of mean curvature flow singularities persist under arbitrary small perturbations of the initial surface. Newest update (Oct 2013) fixes some bibliographic reference

    Magnetic field-induced soft mode in spin-gapped high-Tc superconductors

    Full text link
    We present an explanation of the dynamical in-gap spin mode in LSCO induced by an applied magnetic field H as recently observed by J. Chang et al. Our model consists of a phenomenological spin-only Hamiltonian, and the softening of the spin mode is caused by vortex pinning of dynamical stripe fluctuations which we model by a local ordering of the exchange interactions. The spin gap vanishes experimentally around H=7T which in our scenario corresponds to the field required for overlapping vortex regions.Comment: 4 pages, 3 fig

    NuSTAR detection of X-ray heating events in the quiet Sun

    Get PDF
    The explanation of the coronal heating problem potentially lies in the existence of nanoflares, numerous small-scale heating events occurring across the whole solar disk. In this Letter, we present the first imaging spectroscopy X-ray observations of three quiet Sun flares during the Nuclear Spectroscopic Telescope ARray (NuSTAR) solar campaigns on 2016 July 26 and 2017 March 21, concurrent with the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) observations. Two of the three events showed time lags of a few minutes between peak X-ray and extreme ultraviolet emissions. Isothermal fits with rather low temperatures in the range 3.2–4.1 MK and emission measures of (0.6–15) × 1044 cm−3 describe their spectra well, resulting in thermal energies in the range (2–6) × 1026 erg. NuSTAR spectra did not show any signs of a nonthermal or higher temperature component. However, as the estimated upper limits of (hidden) nonthermal energy are comparable to the thermal energy estimates, the lack of a nonthermal component in the observed spectra is not a constraining result. The estimated Geostationary Operational Environmental Satellite (GOES) classes from the fitted values of temperature and emission measure fall between 1/1000 and 1/100 A class level, making them eight orders of magnitude fainter in soft X-ray flux than the largest solar flares

    Mass Models and Sunyaev-Zeldovich Effect Predictions for a Flux Limited Sample of 22 Nearby X-Ray Clusters

    Get PDF
    We define a 90% complete, volume-limited sample of 31 z<0.1 x-ray clusters and present a systematic analysis of public ROSAT PSPC data on 22 of these objects. Our efforts are undertaken in support of the Penn/OVRO SZE survey, and to this end we present predictions for the inverse Compton optical depth towards all 22 of these clusters. We have performed detailed Monte Carlo simulations to understand the effects of the cluster profile uncertainties on the SZE predictions given the OVRO 5.5-meter telescope beam and switching patterns; we find that the profile uncertainties are one of the least significant components of our error budget for SZE-based distance measurements. We also present baryonic masses and baryon mass fractions derived under the assumption of hydrostatic equilibrium for these 22 clusters. The mean baryonic mass fraction within R_500 \sim 500 h^-1 kpc is (7.02 \pm 0.28) x 10^-2 h^-3/2, or (19.8 \pm 0.8) x 10^-2 for h=0.5. We confirm the Allen et al. (1993) claim of an excess absorbing column density towards Abell 478, but do not find similar anomalies in the other 21 clusters in our sample. We also find some evidence for an excess of soft counts in the ROSAT PSPC data. A measurement of H_o using these models and OVRO SZE determinations will be presented in a second paper.Comment: 51 pages, 6 figures included in text. Added comparison of different cosmologies; accepted for publication in Ap

    Microflare Heating of a Solar Active Region Observed with NuSTAR, Hinode/XRT, and SDO/AIA

    Get PDF
    NuSTAR is a highly sensitive focusing hard X-ray (HXR) telescope and has observed several small microflares in its initial solar pointings. In this paper, we present the first joint observation of a microflare with NuSTAR and Hinode/XRT on 2015 April 29 at ~11:29 UT. This microflare shows heating of material to several million Kelvin, observed in Soft X-rays (SXRs) with Hinode/XRT, and was faintly visible in Extreme Ultraviolet (EUV) with SDO/AIA. For three of the four NuSTAR observations of this region (pre-, decay, and post phases) the spectrum is well fitted by a single thermal model of 3.2-3.5 MK, but the spectrum during the impulsive phase shows additional emission up to 10 MK, emission equivalent to A0.1 GOES class. We recover the differential emission measure (DEM) using SDO/AIA, Hinode/XRT, and NuSTAR, giving unprecedented coverage in temperature. We find the pre-flare DEM peaks at ~3 MK and falls off sharply by 5 MK; but during the microflare's impulsive phase the emission above 3 MK is brighter and extends to 10 MK, giving a heating rate of about 2.5×10252.5 \times 10^{25} erg s−1^{-1}. As the NuSTAR spectrum is purely thermal we determined upper-limits on the possible non-thermal bremsstrahlung emission. We find that for the accelerated electrons to be the source of the heating requires a power-law spectrum of Ύ≄7\delta \ge 7 with a low energy cut-off Ecâ‰Č7E_{c} \lesssim 7 keV. In summary, this first NuSTAR microflare strongly resembles much more powerful flares.Comment: Accepted for publication in ApJ. 14 pages with 12 figures and 1 tabl

    Fast imaging of filaments in the X-point region of Alcator C-Mod

    Get PDF
    A rich variety of field-aligned fluctuations has been revealed using fast imaging of Dαemission from Alcator C-Mod's lower X-point region. Field-aligned filamentary fluctuations are observed along the inner divertor leg, within the Private-Flux-Zone (PFZ), in the Scrape-Off Layer (SOL) outside the outer divertor leg, and, under some conditions, at or above the X-point. The locations and dynamics of the filaments in these regions are strikingly complex in C-Mod. Changes in the filaments’ generation appear to be ordered by plasma density and magnetic configuration. Filaments are not observed for plasmas with n/nGreenwaldâ‰Č 0.12 nor are they observed in Upper Single Null configurations. In a Lower Single Null with 0.12 â‰Č n/nGreenwald â‰Č 0.45 and Bx∇B directed down, filaments typically move up the inner divertor leg toward the X-point. Reversing the field direction results in the appearance of filaments outside of the outer divertor leg. With the divertor targets “detached”, filaments inside the LCFS are seen. These studies were motivated by observations of filaments in the X-point and PFZ regions in MAST, and comparisons with those observations are made. Keywords: Alcator C-Mod; Turbulence; Divertor; X-point; Filament
    • 

    corecore